
Multithreading for Visual Effects
9:00am-12:15pm

August 12, 2015

Your logo on white 

centered in this space





Multithreading for Visual Effects

Multithreading Introduction and Overview
James Reinders

Intel

Your logo on white 

centered in this space



Agenda



@multithreadvfx

www.multithreadingandvfx.org

άaǳƭǘƛǘƘǊŜŀŘƛƴƎ ŦƻǊ ±ƛǎǳŀƭ 9ŦŦŜŎǘǎέ



Taylor & Francis

Booth 528



@multithreadvfx

www.multithreadingandvfx.org

άaǳƭǘƛǘƘǊŜŀŘƛƴƎ ŦƻǊ ±ƛǎǳŀƭ 9ŦŦŜŎǘǎέ



Agenda



ñThink Parallelò



ñThink Parallelò

ïParallelism is almost never effective to 

ñstick inò at the last minute in a program

ïThink about everything

in terms of how to do in parallel

as cleanly as possible



Motivation



© 2015, James Reinders, used with permission. http://lotsofcores.com

rates over time.

1973 1MHz, 2003 1 GHz

нллп о DIȊΣ ǎǘƛƭƭ ǘƻŘŀȅΧ

power wall + ILP wall + memory wall
solve: parallel hardware + explicit parallel software + 

software memory optimization

2015



© 2015, James Reinders, used with permission. http://lotsofcores.com

2015



Core and Thread Counts Width

Single core, single thread, ruled for decades.
Multithread: grow die area small % for addition hardware thread(s) sharing resources.
Multicore/Many Core: 100% die area for additional hardware thread without sharing,

© 2015, James Reinders, used with permission. http://lotsofcores.com

Data parallelism: handling more data at once,
multibyte, multiword, many words.



© 2015, James Reinders, used with permission. http://lotsofcores.com

Parallel hardware designs can be

more efficient if they can assume that

programs will use scaling for performance well.



Task

ÅKey thing to know:

ïProgram in TASKS not THREADS.

http:// tinyurl.com/ threadsYUCK



Task

ÅKey thing to know:

ïProgram in TASKS not THREADS.

This means:

ïProgrammerôs job: identify (lots) of tasks to do

ïRuntimeôs job: map tasks onto threads at runtime



Jamesô BIG 3 REASONS
to avoid programming to specific hardware mechanisms

1. Portability is impaired severely when coding 
ñclose to the hardwareò

2. Nested parallelism is IMPORTANT
(nearly impossible to manage well using 
ñmandatory parallelismò methods such as threads)

3. Other parallelism mechanisms (e.g., 
vectorization) needs to be considered and 
balanced. 



What makes a good abstraction?

ïHardware agnostic

ïPerformance

ïñScale forwardò (preserve investments)

ïReliable and predictable

ïEffective use of scarce resource: us

Course Notes ONLY material



Parallel Programming

ÅNo widely used (popular) programming language 

was designed for expressing parallel programming.

ïNot Fortran, C, C++, Java, C#, Perl, Python, Ruby

ÅThis creates many challenges

ÅFundamental question of all programming 

languages: level of abstraction



Parallel Programming Models

ÅSequential Semantics?

ÅA fundamental design choice;

Åmost abstract solutions being ñretrofitò into existing 
programming languages tend to choose to 
preserve sequential semantics.

ÅTEST: if ignoring the parallel 
keywords/directives/calls would result in equivalent 
functionality (expected to be slower), then Iôd 
expect that sequential semantics are at play.

Course Notes ONLY material



Programming Model Ideal Goals

ÅPerformance:

ïachievable, scalable, predictable, tunable, portable

ÅProductivity:

ïexpressive, composable, debugable, maintainable

ÅPortability

ïfunctionality & performance across

operating systems, compilers, targets



Level of Abstraction: Parallelism

ÅThere is no ñperfectò answer (one size fits all)

ÅHigher level programming (more abstract):
ïDesired benefits:

More portable, more performance portable, better 
investment preservation over time.

ÅLower level programming (less abstract):
ïDesired benefits:

More control for the programmer.



Level of Abstraction: Parallelism

ÅThere is no ñperfectò answer (one size fits all)

ÅHigher level programming (more abstract):
ïDesired benefits:

More portable, more performance portable, better 
investment preservation over time.

ÅLower level programming (less abstract):
ïDesired benefits:

More control for the programmer.

TBB, OpenMP*

OpenCL*, CUDA*

* Third party marks may be claimed as the property of others.



Advancing C and C++



www.threadingbuildingblocks.org
V Most popular C++ abstraction

V Windows*

V Linux*

V Mac OS* X

V Xbox 360

V Solaris*

V FreeBSD*

V Intel processors

V AMD processors

V SPARC processors

V IBM processors

V open source

V standard committee submissions

The most used method to parallelize C++ programs

* Other names and brands may be claimed as the property of others.


