SIGGRAPH2015 | i Gomauter araphics and teractve Techniaues

Xroads of Discovery

N\

MOLTITHREADING s VISUAL EEFEGTS

Martin Watt ® Erwin Coumans George ElKoura * Ronald Henderson
Manuel Kraemer © Jeff Lait ® James Reinders

Multithreading for Visual Effects
9:00am-12:15pm
August 12, 2015

Xroads of Discovery

\ v

@ SIGGRAPH2015

’Q’ SIGGRAPH2015 | I iemetent coees e,

Xroads of Discovery

Multithreading for Visual Effects

Multithreading Introduction and Overview
James Reinders
Intel

9:00am
9:00am
9:05am
9:45am
10:30am
10:45am
11:10am
11:40am
12:15pm

Start
Introduction
Multithreading Introduction and Overview

Parallelism in Houdini - practical lessons learned

Break

GPU Rigid Body Simulation Using OpenCL

Asynchronous Computation Engine for Animation
Parallel Evaluation of Character Rigs Using TBB

Done

James Reinders, Intel

James Reinders, Intel

Jeff Lait, Side Effects Software

Erwin Coumans, Google
George ElKoura, Pixar

Martin Watt, Dreamworks Animation

www.multithreadingandvfx.org

GdadefUlIKNSF RAY3 F2

ttttttttttttttttt

BOOK OF THE DAY a
__ SPECIAL OFFER T%‘:, ,’),,g

7 Special\\

Price ‘
| 369.95 3
$40.00 g/

v’

HHIIIIHH[AI]INH o VISUAL EFFECTS

umans © George Elkoura » Ronald Hendurson
mer = Jolf Lait » James Reinders

in Co
Pasuel Kyae

oKL I

Special Price for SICGRAPH Attendoees Only
Don't Miss Your Chance to Save!

Taylor & Francis

Booth 528

www.multithreadingandvfx.org

GdadefUlIKNSF RAY3 F2

9:00am
9:00am
9:05am
9:45am
10:30am
10:45am
11:10am
11:40am
12:15pm

Start

Introduction

Multithreading Introduction and Overview
Parallelism in Houdini - practical lessons learned
Break

GPU Rigid Body Simulation Using OpenCL

Asynchronous Computation Engine for Animation

Parallel Evaluation of Character Rigs Using TBB

Done

James Reinders, Intel
James Reinders, Intel

Jeff Lait, Side Effects Software

Erwin Coumans, Google
George ElKoura, Pixar

Martin Watt, Dreamworks Animation

nNThi nk Parall el

nNThi nk Parall el

I Parallelism i1s almost never effective to
hnsti ck 1T no at t he | ast

I Think about everything
In terms of how to do in parallel
as cleanly as possible

Motivation

Clock Rates

rates over time.

1973 1MHz, 2003 1 GF

Hnnn o DITZX

power wall + ILP wall + memory wx

solve: parallel hardware + explicit parallel software
software memory optimization

0.0001] L L | '] L] 1
1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

© 2015, James Reinders, used with permission. htipgbfcores.com

Transistor Counts

4
o
B
0
=
2
=
c
2
=

o ©
S o

D. 001 I I I I] L) 1
1970 1975 1980 1985 1980 1985 2000 2005

© 2015, James Reinders, used with permission. htipgbfcores.com

Core and Thread Counts

Threads
W Cores

+—-0-N-E -0 —aEEN-N- I
1970 1975 1980 1985 1980 1995 2000 2005 2010 2015

Single core, single thread, ruled for decades.
Multithread: grow die area small % for addition hardware thread(s) sharing resources.
Multicore/Many Core 100% die area for additional hardware thread without sharing,

Data parallelismhandling more data at once,

multibyte, multiword, many words.
© 2015, James Reinders, used with permission. htipgbfcores.com

Intel Xeon Phi coprocessor Peak

g
£
£
g

Intel Xeon processor Peak

Parallel hardware designs can be

more efficient if they can assume that

/g programs will use scaling for performance well.
0

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101106111116

_ Threads
© 2015, James Reinders, used with permission. htipgbfcores.com

Task

A Key thing to know:
I Program in TASKS not THREADS.

http:// tinyurl.com/threadsYUCK

Task

A Key thing to know:
I Program in TASKS not THREADS.

This means:
IProgrammer 0s Job: i1 dentif
IRunti medos jJob: map tasks

Jameso BI G 3 REASONS
to avoid programming to specific hardware mechanisms

1. Portability i1s impaired severely when coding
nNcl ose to the hardware

2. Nested parallelism is IMPORTANT
(nearly impossible to manage well using

Amandatory parallelismo n

3. Other parallelism mechanisms (e.qg.,
vectorization) needs to be considered and
balanced.

What makes a good abstraction?

Hardware agnostic

Performance

NScalef or war do (preserve
Reliable and predictable

Effective use of scarce resource: us

Parallel Programming

A No widely used (popular) programming language
was designed for expressing parallel programming.
I Not Fortran, C, C++, Java, C#, Perl, Python, Ruby

A This creates many challenges

A Fundamental question of all programming
languages: level of abstraction

Parallel Programming Models

A Sequential Semantics?
A A fundamental design choice;

Amost abstract solutions |
programming languages tend to choose to
preserve sequential semantics.

A TEST: if ignoring the parallel
keywords/directives/calls would result in equivalent
functionali ty (expected t
expect that sequential semantics are at play.

Programming Model Ideal Goals

A Performance:

I achievable, scalable, predictable, tunable, portable
A Productivity:

| expressive, composable, debugable, maintainable

A Portability

I functionality & performance across
operating systems, compilers, targets

L evel of Abstraction: Parallelism
AThere is no fAperfecto an:

A Higher level programming (more abstract):

I Desired benefits:
More portable, more performance portable, better
Investment preservation over time.

A Lower level programming (less abstract):

I Desired benefits:
More control for the programmer.

L evel of Abstraction: Parallelism
AThere is no fAperfecto an:

A Higher level programming (more abstract):

i Desired benefits: TBBOpenMP

More portable, more performance portable, better
Investment preservation over time.

A Lower level programming (less abstract):
i Desired benefits: OpenCi_’ CUDA

More control for the programmer.

Advancing C and C++

www.threadingbuildingblocks.org

Most popular C++ abstraction
Windows

Linux

Mac OS* X

Xbox 360

Solaris

FreeBSD

Intel processors

AMD processors

SPARC processors

IBM processors

open source

standard committee submissions

<L L L L L L L L L L LKL

'ne most used method 10 parallellze C++ programs

