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nNThi nk Parall el

I Parallelism i1s almost never effective to
hnsti ck 1T no at t he | ast

I Think about everything
In terms of how to do in parallel
as cleanly as possible



Motivation



Clock Rates

rates over time.

1973 1MHz, 2003 1 GF
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power wall + ILP wall + memory wx

solve: parallel hardware + explicit parallel software
software memory optimization
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Transistor Counts
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Core and Thread Counts

Threads
W Cores
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Single core, single thread, ruled for decades.
Multithread: grow die area small % for addition hardware thread(s) sharing resources.
Multicore/Many Core 100% die area for additional hardware thread without sharing,

Data parallelismhandling more data at once,

multibyte, multiword, many words.
© 2015, James Reinders, used with permission. htipgbfcores.com




Intel Xeon Phi coprocessor Peak
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Parallel hardware designs can be

more efficient if they can assume that

/g programs will use scaling for performance well.
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_ Threads
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Task

A Key thing to know:
I Program in TASKS not THREADS.

http:// tinyurl.com/threadsYUCK



Task

A Key thing to know:
I Program in TASKS not THREADS.

This means:
IProgrammer 0s Job: i1 dentif
IRunti medos jJob: map tasks



Jameso BI G 3 REASONS
to avoid programming to specific hardware mechanisms

1. Portability i1s impaired severely when coding
nNcl ose to the hardware

2. Nested parallelism is IMPORTANT
(nearly impossible to manage well using

Amandatory parallelismo n

3. Other parallelism mechanisms (e.qg.,
vectorization) needs to be considered and
balanced.



What makes a good abstraction?

Hardware agnostic

Performance

NScalef or war do ( preserve
Reliable and predictable

Effective use of scarce resource: us



Parallel Programming

A No widely used (popular) programming language
was designed for expressing parallel programming.
I Not Fortran, C, C++, Java, C#, Perl, Python, Ruby

A This creates many challenges

A Fundamental question of all programming
languages: level of abstraction



Parallel Programming Models

A Sequential Semantics?
A A fundamental design choice;

Amost abstract solutions |
programming languages tend to choose to
preserve sequential semantics.

A TEST: if ignoring the parallel
keywords/directives/calls would result in equivalent
functionali ty (expected t
expect that sequential semantics are at play.



Programming Model Ideal Goals

A Performance:

I achievable, scalable, predictable, tunable, portable
A Productivity:

| expressive, composable, debugable, maintainable

A Portability

I functionality & performance across
operating systems, compilers, targets



L evel of Abstraction: Parallelism
AThere is no fAperfecto an:

A Higher level programming (more abstract):

I Desired benefits:
More portable, more performance portable, better
Investment preservation over time.

A Lower level programming (less abstract):

I Desired benefits:
More control for the programmer.



L evel of Abstraction: Parallelism
AThere is no fAperfecto an:

A Higher level programming (more abstract):

i Desired benefits: TBBOpenMP

More portable, more performance portable, better
Investment preservation over time.

A Lower level programming (less abstract):
i Desired benefits: OpenCi_’ CUDA

More control for the programmer.



Advancing C and C++



www.threadingbuildingblocks.org

Most popular C++ abstraction
Windows

Linux

Mac OS* X

Xbox 360

Solaris

FreeBSD

Intel processors

AMD processors

SPARC processors

IBM processors

open source

standard committee submissions

<L L L L L L L L L L LKL

'ne most used method 10 parallellze C++ programs




